PARABOLIC GEOMETRIES
FOR PEOPLE THAT LIKE PICTURES

LECTURE 4 WARM-UP: A PRIMER
ON (SL,;R, B)

JACOB W. ERICKSON

Consider the Lie group SLyR of linear transformations of R? with
determinant 1, which we can represent via matrices as

SLQR:{[Z Z] ca,b,c,d € R, ad—bc:l},

and the Borel subgroup

B::{[g abl} :aERX,bER}.

By definition, we have a natural action of SLy R on R?, and this induces
an action on the projective line RP', the space of 1-dimensional linear
subspaces of R2. Under this action, the subgroup B is the stabilizer
of the point (}) € RP' corresponding to the line generated by [}], so

since SLy R acts transitively on RP*, we may identify the homogeneous
space SLy R/B with RP'.
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FIGURE 1. Every 1-dimensional subspace ([3]) of R? in-
tersects the line {[}]: ¢t € R}, except for the line ([9])

Each 1-dimensional subspace of R? intersects the unit circle at a
unique pair of antipodal points, so we can think of RP! as the circle

with antipodal points identified. Moreover, all but one point of RP" is
1



2 JACOB W. ERICKSON

of the form (1) for some ¢ € R, so we can also think of RP' as a copy
of the affine line together with a “point at infinity” (9).

As transformations, the one-parameter subgroup exp (s[{9]) = [19]
acts by translations on the affine line and fixes the point at infinity:
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FIGURE 2. The transformation [1 9] acts by translating
along the copy of the affine line
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FIGURE 3. A depiction of the left-action of [1 ] on the
circle with antipodal points identified
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The one-parameter subgroup exp (s[§ % ]) = [4 %], on the other
hand, acts by rescaling the affine line by e~2%, and also fixes the point
at infinity:

e 0 Iy (e ) 1
o ) () = ()
and

o G- () - ()
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FIGURE 4. The transformation [¢ %] acts by rescaling
the copy of the affine line by e 2

s

Frokeow
ok '\\%\?\l\‘k

at \zer0'

FIGURE 5. A depiction of the left-action of [¢ °.] on
the circle with antipodal points identified
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Finally, we have the one-parameter subgroup exp (s[84]) = [{§],
which is a bit of an oddity. The transformation [} §] fixes the point (}),
as the rescaling matrix did, but not the “point at infinity”. Instead,
it acts by translations along another copy of the affine line, given by
{(1) : t € R}; with respect to this new affine line, the point () would
be thought of as the “point at infinity”:

o 0= (1) e o 1] G) - (o)
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FIGURE 6. A depiction of the left-action of [} §] on the
circle with antipodal points identified

On the original copy of the affine line, we have

L0 ()

which corresponds to the point ﬁ € R when 1+ st # 0. I've got-
ten in the habit of calling these things “(unipotent) tilts”, for reasons
that will be clearer in a moment, though there isn’t really a standard
terminology for these transformations.

An additional, and convenient, one-parameter subgroup for this ge-

ometry is exp (0[% ']) = [Z?j((z)) _Czis?é?)}, which corresponds to just ro-

tating the circle (while keeping antipodal points identified). The reason
that this one-parameter subgroup is convenient here is that it happens
to act transitively on SLy R/ B, since it just rotates along the circle.
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As I explained in the last lecture, we think of SL, R as the space
of configurations of an observer over SL,R/B = RP'. Each matrix
A € SLy R uniquely determines a pair of column vectors A ([}]) and
A([9]). The vector A ([§]) generates the line (A ([{])) corresponding
to ¢, (A), and A ([?]) determines the copy of the affine line along which
we move when we right-translate by [! ¢]. Indeed, for [u v] € SLy R,
we have

[ o] E ﬂ = [u+ v 9],

so when we right-translate [u v] by [L{], we move from the point
¢, ([u v]) corresponding to the line (u) to the point ¢, ([u + sv v])
corresponding to the line (u + sv).
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FIGURE 7. In the matrix [u v] € SLy R, the vector u de-
termines the line (u) corresponding to the point g, ([u v])
and v determines a copy of the affine line along which we
move when we right-translate by [1 9]

The rescalings, tilts, and —1 together generate the subgroup B, so
given a configuration g € SLy R over a point ¢, (g) € SLy R/B, chang-
ing to a different configuration over that point corresponds to right-
translating by compositions of these tilts, rescalings, and —1. As with
affine geometry, it is worth taking a moment to imagine what this looks
like.

As we might expect, right-translating A by a rescaling just rescales
ourselves along the affine line determined by A ([?]). The unipotent
tilts, on the other hand, ¢ilt the affine line determined by A ([9]) along
the line corresponding to ¢, (A):

[ o] B ﬂ — u su+).
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FIGURE 8. Right-translating [u v] € SLy R by a unipo-
tent tilt takes the affine line determined by v and tilts it
along the line determined by u



