PARABOLIC GEOMETRIES FOR PEOPLE THAT LIKE PICTURES

LECTURE 4 WARM-UP: A PRIMER ON ($\left.\mathrm{SL}_{2} \mathbb{R}, B\right)$

JACOB W. ERICKSON

Consider the Lie group $\mathrm{SL}_{2} \mathbb{R}$ of linear transformations of \mathbb{R}^{2} with determinant 1 , which we can represent via matrices as

$$
\mathrm{SL}_{2} \mathbb{R}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

and the Borel subgroup

$$
B:=\left\{\left[\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right]: a \in \mathbb{R}^{\times}, b \in \mathbb{R}\right\} .
$$

By definition, we have a natural action of $\mathrm{SL}_{2} \mathbb{R}$ on \mathbb{R}^{2}, and this induces an action on the projective line $\mathbb{R} \mathbb{P}^{1}$, the space of 1-dimensional linear subspaces of \mathbb{R}^{2}. Under this action, the subgroup B is the stabilizer of the point $\binom{1}{0} \in \mathbb{R P}^{1}$ corresponding to the line generated by $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so since $\mathrm{SL}_{2} \mathbb{R}$ acts transitively on $\mathbb{R} \mathbb{P}^{1}$, we may identify the homogeneous space $\mathrm{SL}_{2} \mathbb{R} / B$ with $\mathbb{R} \mathbb{P}^{1}$.

Figure 1. Every 1-dimensional subspace $\left\langle\left[\begin{array}{l}x \\ y\end{array}\right]\right\rangle$ of \mathbb{R}^{2} intersects the line $\left\{\left[\begin{array}{l}1 \\ t\end{array}\right]: t \in \mathbb{R}\right\}$, except for the line $\left\langle\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\rangle$

Each 1-dimensional subspace of \mathbb{R}^{2} intersects the unit circle at a unique pair of antipodal points, so we can think of $\mathbb{R} \mathbb{P}^{1}$ as the circle with antipodal points identified. Moreover, all but one point of $\mathbb{R P}^{1}$ is
of the form $\binom{1}{t}$ for some $t \in \mathbb{R}$, so we can also think of $\mathbb{R} \mathbb{P}^{1}$ as a copy of the affine line together with a "point at infinity" $\binom{0}{1}$.

As transformations, the one-parameter subgroup $\exp \left(s\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{cc}1 & 0 \\ s & 1\end{array}\right]$ acts by translations on the affine line and fixes the point at infinity:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right] \cdot\binom{1}{t}=\binom{1}{s+t} \text { and }\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right] \cdot\binom{0}{1}=\binom{0}{1} .} \\
{\left[\begin{array}{ll}
1 & 0 \\
S & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
\mathrm{~S}
\end{array}\right] ?} \\
{\left[\begin{array}{ll}
1 & 0 \\
5 & 1
\end{array}\right]}
\end{gathered}
$$

Figure 2. The transformation $\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right]$ acts by translating along the copy of the affine line

Figure 3. A depiction of the left-action of $\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right]$ on the circle with antipodal points identified

The one-parameter subgroup $\exp \left(s\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)=\left[\begin{array}{cc}e^{s} & 0 \\ 0 & e^{-s}\end{array}\right]$, on the other hand, acts by rescaling the affine line by $e^{-2 s}$, and also fixes the point at infinity:

$$
\left[\begin{array}{cc}
e^{s} & 0 \\
0 & e^{-s}
\end{array}\right] \cdot\binom{1}{t}=\binom{e^{s}}{e^{-s} t}=\binom{1}{e^{-2 s} t}
$$

and

$$
\left[\begin{array}{cc}
e^{s} & 0 \\
0 & e^{-s}
\end{array}\right] \cdot\binom{0}{1}=\binom{0}{e^{-s}}=\binom{0}{1} .
$$

Figure 4. The transformation $\left[\begin{array}{cc}e^{s} & 0 \\ 0 & e^{-s}\end{array}\right]$ acts by rescaling the copy of the affine line by $e^{-2 s}$

Figure 5. A depiction of the left-action of $\left[\begin{array}{cc}e^{s} & 0 \\ 0 & e^{-s}\end{array}\right]$ on the circle with antipodal points identified

Finally, we have the one-parameter subgroup $\exp \left(s\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right]$, which is a bit of an oddity. The transformation $\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right]$ fixes the point $\binom{1}{0}$, as the rescaling matrix did, but not the "point at infinity". Instead, it acts by translations along another copy of the affine line, given by $\left\{\binom{t}{1}: t \in \mathbb{R}\right\}$; with respect to this new affine line, the point $\binom{1}{0}$ would be thought of as the "point at infinity":

$$
\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right] \cdot\binom{t}{1}=\binom{s+t}{1} \text { and }\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right] \cdot\binom{1}{0}=\binom{1}{0}
$$

Figure 6. A depiction of the left-action of $\left[\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right]$ on the circle with antipodal points identified

On the original copy of the affine line, we have

$$
\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right] \cdot\binom{1}{t}=\binom{1+s t}{t}
$$

which corresponds to the point $\frac{t}{1+s t} \in \mathbb{R}$ when $1+s t \neq 0$. I've gotten in the habit of calling these things "(unipotent) tilts", for reasons that will be clearer in a moment, though there isn't really a standard terminology for these transformations.

An additional, and convenient, one-parameter subgroup for this geometry is $\exp \left(\theta\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$, which corresponds to just rotating the circle (while keeping antipodal points identified). The reason that this one-parameter subgroup is convenient here is that it happens to act transitively on $\mathrm{SL}_{2} \mathbb{R} / B$, since it just rotates along the circle.

As I explained in the last lecture, we think of $\mathrm{SL}_{2} \mathbb{R}$ as the space of configurations of an observer over $\mathrm{SL}_{2} \mathbb{R} / B \cong \mathbb{R} \mathbb{P}^{1}$. Each matrix $A \in \mathrm{SL}_{2} \mathbb{R}$ uniquely determines a pair of column vectors $A\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $A\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$. The vector $A\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ generates the line $\left\langle A\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)\right\rangle$ corresponding to $q_{B}(A)$, and $A\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ determines the copy of the affine line along which we move when we right-translate by $\left[\begin{array}{cc}1 & 0 \\ s & 1\end{array}\right]$. Indeed, for $[u v] \in \mathrm{SL}_{2} \mathbb{R}$, we have

$$
\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right]=[u+s v v]
$$

so when we right-translate $\left[\begin{array}{ll}u & v\end{array}\right]$ by $\left[\begin{array}{ll}1 & 0 \\ s & 1\end{array}\right]$, we move from the point $q_{B}\left(\left[\begin{array}{ll}u & v\end{array}\right]\right)$ corresponding to the line $\langle u\rangle$ to the point $q_{B}\left(\left[\begin{array}{lll}u+s v & v\end{array}\right]\right)$ corresponding to the line $\langle u+s v\rangle$.

Figure 7. In the matrix $[u v] \in \mathrm{SL}_{2} \mathbb{R}$, the vector u determines the line $\langle u\rangle$ corresponding to the point $q_{B}([u v])$ and v determines a copy of the affine line along which we move when we right-translate by $\left[\begin{array}{cc}1 & 0 \\ s & 1\end{array}\right]$

The rescalings, tilts, and $-\mathbb{1}$ together generate the subgroup B, so given a configuration $g \in \mathrm{SL}_{2} \mathbb{R}$ over a point $q_{B}(g) \in \mathrm{SL}_{2} \mathbb{R} / B$, changing to a different configuration over that point corresponds to righttranslating by compositions of these tilts, rescalings, and $-\mathbb{1}$. As with affine geometry, it is worth taking a moment to imagine what this looks like.

As we might expect, right-translating A by a rescaling just rescales ourselves along the affine line determined by $A\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$. The unipotent tilts, on the other hand, tilt the affine line determined by $A\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ along the line corresponding to $q_{B}(A)$:

$$
\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
u & s u+v
\end{array}\right]
$$

Figure 8. Right-translating $[u v] \in \mathrm{SL}_{2} \mathbb{R}$ by a unipotent tilt takes the affine line determined by v and tilts it along the line determined by u

