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Consider the Lie group SL2R of linear transformations of R2 with
determinant 1, which we can represent via matrices as

SL2R =

{[
a b
c d

]
: a, b, c, d ∈ R, ad− bc = 1

}
,

and the Borel subgroup

B :=

{[
a b
0 a−1

]
: a ∈ R×, b ∈ R

}
.

By definition, we have a natural action of SL2R on R2, and this induces
an action on the projective line RP1, the space of 1-dimensional linear
subspaces of R2. Under this action, the subgroup B is the stabilizer
of the point ( 1

0 ) ∈ RP1 corresponding to the line generated by [ 10 ], so
since SL2R acts transitively on RP1, we may identify the homogeneous
space SL2R/B with RP1.

Figure 1. Every 1-dimensional subspace ⟨[ xy ]⟩ of R2 in-
tersects the line {[ 1t ] : t ∈ R}, except for the line ⟨[ 01 ]⟩

Each 1-dimensional subspace of R2 intersects the unit circle at a
unique pair of antipodal points, so we can think of RP1 as the circle
with antipodal points identified. Moreover, all but one point of RP1 is

1
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of the form ( 1
t ) for some t ∈ R, so we can also think of RP1 as a copy

of the affine line together with a “point at infinity” ( 0
1 ).

As transformations, the one-parameter subgroup exp (s[ 0 0
1 0 ]) = [ 1 0

s 1 ]
acts by translations on the affine line and fixes the point at infinity:[

1 0
s 1

]
·
(
1
t

)
=

(
1

s+ t

)
and

[
1 0
s 1

]
·
(
0
1

)
=

(
0
1

)
.

Figure 2. The transformation [ 1 0
s 1 ] acts by translating

along the copy of the affine line

Figure 3. A depiction of the left-action of [ 1 0
s 1 ] on the

circle with antipodal points identified
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The one-parameter subgroup exp (s[ 1 0
0 −1 ]) = [ e

s 0
0 e−s ], on the other

hand, acts by rescaling the affine line by e−2s, and also fixes the point
at infinity: [

es 0
0 e−s

]
·
(
1
t

)
=

(
es

e−st

)
=

(
1

e−2st

)
and [

es 0
0 e−s

]
·
(
0
1

)
=

(
0
e−s

)
=

(
0
1

)
.

Figure 4. The transformation [ e
s 0
0 e−s ] acts by rescaling

the copy of the affine line by e−2s

Figure 5. A depiction of the left-action of [ e
s 0
0 e−s ] on

the circle with antipodal points identified
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Finally, we have the one-parameter subgroup exp (s[ 0 1
0 0 ]) = [ 1 s

0 1 ],
which is a bit of an oddity. The transformation [ 1 s

0 1 ] fixes the point (
1
0 ),

as the rescaling matrix did, but not the “point at infinity”. Instead,
it acts by translations along another copy of the affine line, given by
{( t

1 ) : t ∈ R}; with respect to this new affine line, the point ( 1
0 ) would

be thought of as the “point at infinity”:[
1 s
0 1

]
·
(
t
1

)
=

(
s+ t
1

)
and

[
1 s
0 1

]
·
(
1
0

)
=

(
1
0

)
.

Figure 6. A depiction of the left-action of [ 1 s
0 1 ] on the

circle with antipodal points identified

On the original copy of the affine line, we have[
1 s
0 1

]
·
(
1
t

)
=

(
1 + st

t

)
,

which corresponds to the point t
1+st

∈ R when 1 + st ̸= 0. I’ve got-
ten in the habit of calling these things “(unipotent) tilts”, for reasons
that will be clearer in a moment, though there isn’t really a standard
terminology for these transformations.

An additional, and convenient, one-parameter subgroup for this ge-

ometry is exp (θ[ 0 −1
1 0 ]) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, which corresponds to just ro-

tating the circle (while keeping antipodal points identified). The reason
that this one-parameter subgroup is convenient here is that it happens
to act transitively on SL2R/B, since it just rotates along the circle.
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As I explained in the last lecture, we think of SL2R as the space
of configurations of an observer over SL2R/B ∼= RP1. Each matrix
A ∈ SL2R uniquely determines a pair of column vectors A ([ 10 ]) and
A ([ 01 ]). The vector A ([ 10 ]) generates the line ⟨A ([ 10 ])⟩ corresponding
to q

B
(A), and A ([ 01 ]) determines the copy of the affine line along which

we move when we right-translate by [ 1 0
s 1 ]. Indeed, for [u v] ∈ SL2R,

we have

[u v]

[
1 0
s 1

]
= [u+ sv v],

so when we right-translate [u v] by [ 1 0
s 1 ], we move from the point

q
B
([u v]) corresponding to the line ⟨u⟩ to the point q

B
([u + sv v])

corresponding to the line ⟨u+ sv⟩.

Figure 7. In the matrix [u v] ∈ SL2R, the vector u de-
termines the line ⟨u⟩ corresponding to the point q

B
([u v])

and v determines a copy of the affine line along which we
move when we right-translate by [ 1 0

s 1 ]

The rescalings, tilts, and −1 together generate the subgroup B, so
given a configuration g ∈ SL2R over a point q

B
(g) ∈ SL2R/B, chang-

ing to a different configuration over that point corresponds to right-
translating by compositions of these tilts, rescalings, and −1. As with
affine geometry, it is worth taking a moment to imagine what this looks
like.

As we might expect, right-translating A by a rescaling just rescales
ourselves along the affine line determined by A ([ 01 ]). The unipotent
tilts, on the other hand, tilt the affine line determined by A ([ 01 ]) along
the line corresponding to q

B
(A):

[u v]

[
1 s
0 1

]
= [u su+ v].
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Figure 8. Right-translating [u v] ∈ SL2R by a unipo-
tent tilt takes the affine line determined by v and tilts it
along the line determined by u


